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SUMMARY

This work was carried out under task ZRO130901, IR-159. The
present results and conclusions on the transition from burning to
detonation of granular explosives should be of interest in the areas
of explosive sensitivity, reliability, and safety.

This report presents a study of the deflagration to detonation
transition (DDT) behavior of ground tetryl to supplement earlier
studies on coarse (470p) and fine (20p) tetryl. It was found that
grinding the coarse tetryl changed the shape and location of the
curve, predetonation column length (Z) vs. %TMD, and also eliminated
the variant behavior of the transition. In contrast to the fine
and coarse tetryls, the ground tetryl appears to follow exactly
the physical model of DDT originally describing the transition in
91/9 RDX/wax.

Several shots on picric acid (PA) are also reported; they
complete an earlier study. The present results confirm the previous
study in that the transition of PA follows the original model and
show that its £ vs. %TMD curve is, like that of ground tetryl, U
shaped. (The branch at higher %TMD lies very close to the curve for
fine tetryl.) Finally, the uncommonly long relative detonation time
for PA can be attributed entirely to the ignition and burning pro-
cesses which precede the form tion of the first detected compressive
wave. -
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I. INTRODUCTION

The present work is a continuation of the study of the
deflagration to detonation transition (DDT) in pure explosives and
the effect of particle size on such transitions. In particular,
it supplements Reference 1 which presented the results obtained with
fine tetryl (20p), coarse tetryl (470p), and picric acid. Although
fine and coarse tetryl both showed a variation from the physical
model proposed earlier for DDT 2 , the variation could be explained
in terms of the chemistry of tetryl decomposition at relatively
low temperatures'. Moreover, addition of 3% wax to the tetryl so
changed the process that 97/3 tetryl/wax appeared to conform to
the original model. I.e., the waxed tetryl showed a rapid pressure
rise in the ignition region', 3 whereas the coarse and fine tetryls
showed rapid pressure buildup nearer the site of detonation onset
than the ignition region.

The tetryl used in the present work was prepared from the coarse
tetryl of the earlier work by grinding. Its transitional behavior
seems to follow that proposed in the original physical model. Thus,
initial particle size distribution has a large effect on the observed
DDT mechanism as well as on the predetonation column length (k)
as a function of %TMD.

The additional data on picric acid (PA) complete the planned
series of experiments on that material. They also provide further
detail on the unusually long interval between formation of the con-
vective and postconvective (PC) fronts during transition in that
material.

1. Price, D., Bernecker, R. R., Erkman, J. 0., and Clairmont, A. R.,
"DDT Behavior of Tetryl and Picric Acid," NSWC/WOL TR 76-31,
21 May 1976.

2. Bernecker, R. R., and Price, D., Combustion and Flame Vol. 22,
119-129 and 161-170 (1974). See also NOLTR 72-202.

3. Price, D., and Bernecker, R. R., "DDT Behavior of Waxed Mixtures
of RDX, HMX, and Tetryl," NSWC/WOL TR 77-96, 18 Oct 1977.
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II. EXPERIMENTAL ARRANGEMENT AND PROCEDURE

The experimental setup and procedures have been described in
detail elsewhere'1 2 . A schematic of the arrangement is shown in
Figure 1. It consists of a seamless steel tube with heavy end
closures. The column length of the 0.35 g of 25/75 B/KNO3 ignitor
is 6.3 mm; the length of the explosive column is 295.4 mm.

The present tetryl (844) was prepared by grinding the coarse
tetryl (812) underwater in a ball mill for an hour. Figure 2
consists of several photomicrographs of the ground material. They
show many particles of 2 00- 3 00p, which survived the grinding, and
much finer material down to 10p and less. A sieve analysis, given in
Appendix A, indicated a weight mean particle size of T r 160p.
However, this value must be considered suspect because the Preparation
Group was subsequently unable to obtain a sieve cut (T r 115p) or
carry out any other sieving operations on this tetryl. It exhibited
enough static charge to clog the screen openings despite the
electrical grounding of the sieves. Because of this and because
very few particles of 100-160p are evident in Figure 2, tetryl 844
is called "ground tetryl" and no average size is assigned. The
picric acid used is 835 (6 r 67p); it is the same batch used for the
previous work, and its sieve analysis appears in Reference 1.

The DDT tube is instrumented with ionization probes and strain
gages to monitor ionization fronts and internal pressure, respec-
tively. For brevity, henceforth ionization probes will be referred
to as probes; strain gages, as gages. As before', both custom-made
and commercial probes are used; distance-time (x-t) data from each
are distinguished on the graphs. The number of gage locations for
monitoring internal pressure is now an average of four or five per
tube. The gage output is reported in strain (e) or microstrain
(pE). In a static calibration of the tube, the gradient is 112
pc/kbar up to the elastic limit at 2.2 kbar. From 2 to 4.7 kbar,
the microstrain increases from 225 to 788.

All procedures and data reduction are those of Reference 1 and

are completely described there or in Reference 2.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Ground Tetryl

Nine shots were made on the ground tetryl. Detailed data and
records are given in Appendix B; they are summarized in Table 1.
As indicated there, five sets of records indicated transitional
behavior described by the original DDT model 2 ; these included one
shot (No. 1015) that did not show DDT in the regular tube but did
show a convective wave front and a PC front originating near the
ignition area. Only one shot of the nine (No. 615) had records
suggesting the variant behavior observed with fine and coarse tetryl.

2
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In contrast to this, records of three out of eight shots on
coarse tetryll showed the variant behavior and only one suggested
the original model. Similarly, records of four out of ten shots
on fine tetryl' showed the variant behavior and only one suggested
the model. Hence, the mixture of fines with coarse particles
(Figure 2) seems to have changed the DDT behavior from the variant
to that of the original model.

The dashed curve of Figure 3 shows the variation of the
predetonation column length (Z) with percent theoretical maximum
density (%TMD) for the ground tetryl; also shown are the curves
obtained earlier for fine (20p) and coarse (470p) tetryl. It is
obvious that the present data show very large scatter. We attribute
this to the heterogeneity of the material (see Figure 2) as contrasted
to the unimodal, narrow particle size distribution found for both
the fine and coarse tetryls. Addition of the fines from grinding
to the surviving coarse material evidently results in an Z vs. %TMD
relation which approximates the behavior of fine tetryl at high
porosities and of coarse tetryl at lower porosities. Alternatively
(or in addition), crushing the coarse particles of tetryl during
the pressing operation may result in a final particle size distri-
bution more closely approximating that of the ground tetryl than
that of the fine.

Korotov et al.. investigated DDT in porous PETN, both fine
(20p) and coarse (500p). They found that Z vs. %TMD exhibited a

minimum, as do our curves for 91/9 RDX/wax 2 and 94/6 RDX/wax 3 .
Indeed, both coarse and fine tetryl have k vs. %TMD curves showing a
minimum {Reference 1 and Figure 3}. However, for PETN, the value of
Z was practically the same at both minima, and the shift in curves was
such that at 70% TMD Z(fine) > £(coarse) whereas at 60% TMD £(fine)
< k(coarse). The situation for unimodal tetryl is more complicated.
The curve for coarse tetryl has a minimum at about 70% TMD and most
resembles the PETN curves. But the curve for fine tetryl does not
have the same form, and from the available data' it is difficult
to say whether it shows a true minimum or a plateau. Certainly
Z(fine) > 9.(coarse) over the entire range of compaction. This result,
in marked contrast to those reported for PETN, might arise from
the lesser sensitivity and lower reaction rate of the tetryl as
well as from the scatter of the PETN results. The ground tetryl
too shows great scatter, but apparently follows the form of the
PETN curves better than either the coarse or the fine. This might,
in the case of both PETN and ground tetryl, be an effect of the
greater range in particle size than found in either the coarse or
the fine tetryl. If so, the behavior of the ground tetryl might
be reproduced by some mixture of the fine and coarse materials.

4. Korotkov, A. I., Sulimov, A. A., Obmenin, A. V.,
Dubovitskii, V. F., and Kurkin, A. I., "Transition from Combustion
to Detonation in Porous Explosives," Combustion, Explosion, and
Shock Waves, Vol. 5, 216-222 (1969).

6
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The minimum of the curve for ground tetryl seems to be at a higher
k value and about the same %TMD as the corresponding value for the
coarse tetryl.

Another variable of importance in DDT is the relative time
to detonation AtD; it is the time between the response of a specific
IP (generally the trigger probe) and the onset of detonation. In
many cases, there is a correlation between k and AtD as there is
for the coarse and fine tetryls over the porosity range examined.
(The correlation has to be established in each new situation because
it is not always evident e.g., no such correlation could be found
for a constant composition waxed RDX or HMX over a range of com-
paction 3 .) Moreover, if AtD is plotted vs. %TMD, the fine and coarse
tetryls both have U shaped curves with respective minima at 69 and
73.5% TMD (see Figure 4, Table 1, and Tables 1 and 2 of Reference 1;
note that AtD is referred to the probe at 41 mm for the coarse and
ground tetryl, but to that at 60 mm for the fine). In Figure 3,
the Z as %TMD curves drawn show minima at 74 and 71% TMD for the
fine and coarse tetryl, respectively. However, these curves repre-
sent estimates of the best fit to the data. Reference to the original
data (Figure 1 of Reference 1) shows that the curves could have
been drawn to show minima at 69 and 73.5% TMD. In fact, fine tetryl
showed the smallest experimental value of k at 45.8% TMD, not at
either 69 or 73.5% TMD. Because of their better resolution of the
minima, the curves AtD vs. %TMD have improved the location of minima
in the curves of Figure 3 for fine and coarse tetryl. However,
they merely confirm the general location of the curve for ground
tetryl between the other two since the large scatter in these data
is, of course, still evident.

The location of the minima in the £ vs. %TMD curve places that
for the fine tetryl at a higher %TMD than that for the coarse.
That too was the case in the reported PETN data4 . But the two U
shaped curves for PETN overlapped in some sections whereas the curves
for fine and coarse tetryl do not intersect.

It remains to be seen if a mixture can be made of the fine
and coarse tetryl to duplicate the behavior of the ground tetryl.
Meanwhile, the p resent results indicate the inadequacy of a weight
mean diameter (6) to represent the particle size distribution in
a ground material, and, indeed, the use of such a material in studying
the effects of particle size. It is distinctly preferable to use
materials showing a very narrow range in 6 (e.g., the coarse and
fine tetryls of Reference 1) in assessing particle size effects.
However, it is generally too expensive to prepare large amounts
of such materials by sieving a supply of the explosive having a
wide range in particle size (as many production samples or ground
samples do). Moreover, it is generally too expensive to use a con-
trolled recrystallization process. What is needed is equipment
such as a fluidized energy mill which can be set to grind to a
specified narrow range of particle size. It is reported that such
mills are now used by the larger propellant manufacturers, but none
is as yet available in a Navy facility.

8
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B. Picric Acid

The first portion of our study of the DDT behavior of picric
acid was reported in Reference 1. We found that in a number of
cases the convective flame front appeared to fail before it reached
the end of the charge; nevertheless, a transition occurred at a
comparatively large relative time to detonation AtD. Strain gage
records frequently exhibited a number of plateaus indicating com-
paction of the charge, and a rearward compression from the region
of shock formation or detonation was often detected. Finally,
the predetonation column length k was comparable to that of the
fine tetryl, although AtD was much greater. The transition mechanism
appeared to be that of the original model 2 .

Summary data for the additional shots are presented in Table 2.
They have confirmed all the initial observations as well as contri-
buted greater detail which will be described for each shot of the
present data. For convenience, the data of Reference 1 have also
been included in the table.

Shot 1402 (Figure Cl) extended the compaction range for
successful transition up to 77.4% TMD. This shot had a normal rate
for the convective and PC fronts, showed incipient plateaus in the SG
records, and had a rearward travelling reflection at 6.7 mm/ps.
Although that value is within 10% of the detonation velocity, the
ignitor end of the DDT tube was relatively intact. Hence, the
rearward wave seems to be a shock, not a retonation. Finally, the
mechanism appears to be that of the initial model.

At the other end of the porosity scale, three shots have been
fired: 811, 1504, and 1514 at 62-63% TMD. The first two were in
regular length DDT tubes. Shot No. 811 was reported a failure' and
is so labeled in Table 2. However, this was a case in which IP
data and tube fragmentation, dent in the closure bolt, and tube
wall markings were in conflict. Consequently, the shot is labeled F,
but the location of change in wall pattern and time of recording
have also been noted.

Shot 1504 (Figure C3) was a replicate of 811 and showed much
the same results: a falling off of the velocity of the convective
front and SGs triggered in the usual manner, indicating p< 0.3 kbar
during the recording interval. However, at some later (and unknown)
time a probe in a special circuit* triggered backup scopes to

*The special circuit probe was not recorded on the IP record; hence,
it is assumed to have responded after that record ended. Although
the circuit was designed to obtain response of the probe at higher
resistance fronts than the usual convective front, the circuit was
at this time in an early development stage. Thus, the probe response
was sometimes very late as in this case and in Shot 1418 where it
was not recorded at all, and sometimes responded as in Shot 1514
(Figure C2) where it appeared to differ very little from the custom-
made probes.

10
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record data for the first three SGs. These records, shown in
Figure C3b, indicate a compression wave travelling toward the
ignitor at a velocity of 1-2 mm/ps. Moreover, the tube walls
indicate detonation at Z = 242 mm although the marking is not as
clear as that of Shot 811 nor is the fragmentation as great. From
the damage, it does not seem that a retonation occurred. On the
other hand, there is no conclusive evidence that a detonation did
not occur after a long delay time and during a period greater than
the recording time.

Shot 1514 was another replicate of the charge (62.7% TMD),
but was fired in a longer (18 in.) DDT tube instrumented with IPs
but no SGs. This charge definitely showed a transition to detonation
in its IP record (Figure C2).

Figure 5 summarizes the k vs. %TMD data for Lot 835 PA (5 P 67p).
The solid curves are for fine and coarse tetryl, as marked. The
dashed curve is an estimate of the PA curve. Although the two shots
at 62% TMD, which showed ambiguous results, have been plotted as
squares (other data points are circles), they have little influence
on the location of the low %TMD branch of the curve. Picric acid
appears to have a typical U shaped k vs. %TMD curve with a minimum
near 70% TMD. Its shape is similar to that of the ground tetryl
and of those drawn for PETN *. The Z values for PA are approximately
the same as those of the fine tetryl down to 65% TMD.

The parameter that illustrates most significantly the difference
in the DDT behavior of PA compared to tetryl or any of the other HE
so far investigated is relative time to detonation AtD**. To demon-
strate this, available data (at 70% TMD only) have been assembled in
Table 3 and plotted as AtD vs. k in Figure 6. All AtD values are
relative to discharge time of the IP at 41 mm. Consequently, pure
HE such as RDX, HMX, PETN, TNETB, etc. with 9£ r 41 mm and hence
4 1AtD r 0 have been omitted. Only an upper limit curve (for the waxed
series of Reference 3) has been drawn. All other HE fall on or below
this curve whereas PA lies above iti.e., AtD(PA)J' 3 x AtD(another HE
with k = 172 mm).

The interval AtD is made up of (1) At , the time between the
formation of the (first) convective flame Yront and the formation of
the (first compressive) PC front and (2) AtE, the time between the
formation of PC compression front and the onset of detonation.

*PETN is a very sensitive explosive and exhibits very small Z values;
consequently, the measured 9 values show greater scatter and less
precision than those for PA. The scatter for PETN more closely
resembles that for ground tetryl.

**In marked contrast to the data for the tetryls, the PA results
do not produce a curve AtD vs. %TMD similar to the k vs. %TMD curve.
The PA data At vs. %TMD show, at most, a point of inflection; no
minimum is evigent.
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Table 3

AVAILABLE t, At DATA FOR CHARGES AT 70% TMD

H.E. nun 4 1At 4 1 AtE Reference

91/9 RDX/wax 275 P610 127 NOLTR 72-202

94/6 RDX/wax 135 182 - NOLTR 72-202

97/3 RDX/wax 95 79 - NOLTR 72-202

Tetryl (450 p) 64 21 - Read from curves of Figures 3 & 4

Tetryl (20 p) 184 139 - Read from curves of Figures 3 & 4

Tetryl (ground) 103 86 - Read from curves of Figures 3 & 4

PA (67p) 172 1031 150 Average value, Table 2

97/3 RDX (A)/wax 72 32.5 31 NSWC/WOL/TR 77-96

94/6 RDX (A)/wax 130 186 89 NSWC/WOL/TR 77-96

91/9 RDX (A)/wax 220 550 140 NSWC/WOL/TR 77-96

HMX/Wax
(115 p)

3 67 22 22 NSWC/WOL/TR 77-96

6 99 87 56 NSWC/WOL/TR 77-96

9 143 197 117 NSWC/WOL/TR 77-96

12 273 X569 314 NSWC/WOL/TR 77-96

HMX(A)/Wax
6 119 144 81 NSWC/WOL/TR 77-96

9 210 395 179 NSWC/WOL/TR 77-96

NC 165 145 35 Not yet reported

14



NSWC/WOL TR 77-175

If AtE is considered instead of AtD, PA behaves much like other
HE (see Figure 7). Its AtE and k approximate those of 91/9 HMX/wax
among the HE for which we have the data. (Its Z also approximates that
of 70% TMD fine (20p) tetryl for which AtE cannot be measured.) Hence,
as in the previous report, the evidence is strong that PA differs
from other HE chiefly in its resistance to ignition and propagating
combustion. Once a sufficient amount has burned in such a manner
as to form the PC (compression) wave, the rest of the transition
occurs as rapidly'as in any comparable explosive (e.g. 91/9 HMX/wax).

The last two shots listed in Table 2 were made at about 70% TMD
on a narrow sieve cut (T r 115p) taken from PA 835 (T x 67p). The data
are plotted in Figures C4 and C5. Both sets of records show features
observed in the 66-71% TMD range in the previous work'. For example,
Shot 1407 shows a shock from the detonation area travelling toward
the rear, and Shot 1418 shows the familiar failure of the convective
front to propagate in PA. In both C4a and C5a, the PC front has been
drawn as a compression originating at some x < 70 mm. In both cases
it could have been drawn as part of an explosive event originating
at about 78 and 50 mm, repectively. This has not been done because
none of the other PA records suggest anything but the usual DDT model
and because the indication of a different behavior here is not great.

If we average the values of Z for these two shots, we obtain
= 210 mm at 68.6% TMD whereas the curve of Figure 5 shows Z = 175

at this porosity. Hence, the 1 1 5 V material shows a 20% higher value
of Z than the 67p PA. This is hardly significant if normal scatter
is ±10% t. Most of our experiments at 70% TMD have shown a decrease
of £ with an increase in 6. Earlier we described the U shaped Z vs.
%TMD curves for PETN, their shift with change in 6, and their inter-
section. We have also demonstrated here U shaped curves for ground
and coarse tetryl as well as PA. It follows that we really cannot
predict a particle size effect on t for any specific explosive at
any given %TMD. In the present work, we are not sure that removing
the fines from PA (T r 670) has had any effect on its Z value.

To examine the particle size effect on At, the values AtE
vs. %TMD from Table 2 are plotted in Figure 8. The two values for
the 115p PA are shown as solid points, the rest are open. The trend
is decreasing AtE with increasing %TMD, but the scatter is large -
again a spread of about 20% or ±10% for each experiment. Shots
1407 and 1418 are respectively at the lower and upper boundaries
of the scatter range. Hence, the particle size effect on AtE also
seems to be experimentally insignificant.

Finally, examination of C5a and b shows that in the long interval
of propagation and failure of the convective front, SG records show
very low pressures. Thus the apparent failure could be caused by
a pulsating burning such as that observed by Fogel'zang el a15 at

5. Fogel'zang, A. E., Margolin, A. D., Kolyasov, S. M., and
Khasyanov, Kh. Zh., "Combustion of Picric Acid" ibid., Vol. 11
No. 6, 719-26 (1974).
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90-1100 C and 120-180 atm. Optical observation or continuous
electronic recording of electrical resistance or both could clarify
such events in the transitional region. Similarly, the ambiguity of
Shot 1504 here and of Shot 811 in Reference (1) occurred in low pres-
sure regions and could be resolved by the proposed instrumentation.
Consequently we have used a tube strong enough to contain the low
pressure reactions and probe instrumentation as well as sufficiently
transparent for optical observations. This system has been designed
and is being developed by H. W. Sandusky. It will be used to supple-
ment information obtained by use of the regular DDT tube, and PA will
be the first explosive studied.

IV. SUMMARY AND CONCLUSIONS

1. Ground tetryl exhibits DDT behavior that appears to conform
to the physical model proposed for 91/9 RDX/wax.

2. Its Z vs. %TMD curve is U shaped and lies between the curves
for fine and coarse tetryl except at the higher porosities (%TMD < 64)
where it appears to cross the curve for fine tetryl.

3. Particle size distribution, most inadequately described by 5, can
have profound effects on the DDT behavior. In the case of tetryl,
grinding has eliminated any evidence of the variant mechanism of the
transition as well as changed the shape and location of the Z vs.
%TMD curve.

4. Curves of AtD vs. %TMD for fine and coarse tetryl are also U
shaped with minima near the %TMD at which the minima of the Z vs.
%TMD curves occur. The values are 69% and 73.5% TMD for the fine
and coarse tetryl, respectively.

5. Picric acid also has a U shaped k vs. %TMD curve which lies
very close to the corresponding curve for fine tetryl from 78% down
to 65% TMD where the two curves intersect.

6. PA has a much longer relative time to detonation AtD at 70%
TMD than any of the other explosives that have been studied in our
apparatus.

7. The interval AtD is made up of (1) At,,, the time between the
formation of the (first) convective flame~front and the formation
of the (first compressive) PC front and (2) AtE, the time between the
formation of the PC compression front and the onset of detonation.
(Here all three Ats must be referred to the time of discharge of
the same IP.) The interval AtE foc picric acid is normal in size.
Hence it is the earlier interval Atp which is responsible for the
large At D observed.

8. These observations confirm that it is the difficult ignition
and propagation of combustion which is responsible for PA's uncommonly
large value of AtD.

18
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9. The difference in Z at 70% TMD for PA (67p) and the narrow sieve
fraction, PA (115p), is about the maximum to be expected from the
precision of the data. Hence, no significant difference has been
established at this degree of compaction.
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Appendix A

SIEVE ANALYSIS OF GROUND TETRYL; INTERPOLATION
FOR DIFFERENT PARTICLE SIZE

Table Al presents the sieve analysis for the ground tetryl. As
remarked in the text, this is the only time, of perhaps six attempts,
that the Charge Preparation Group was able to sieve tetryl success-
fully. The difficulty arose from an electrostatic charge of the
tetryl particles that resulted in their plugging the sieve openings
despite the fact that the sieves were electrically grounded. Hence
the data of Table Al must be suspect in that the sieve openings
might have been choked if not completely blocked. The data give
an average particle size T of 160p for the ground tetryl.

As much as possible of our work on pure HE is carried out at
1= I15P (a narrow cut between sieves of 105 and 125p openings).

Since we do not have values for tetryl at this 6 and were unsuccessful
in obtaining the sieve cut, it would be convenient to have some method
of interpolation. This has been done as follows.

Comparisons are generally made at 70% TMD. Hence from Figure 3
at 70% TMD, we read the 3 vs. Z values of Table A2. Then

s = 470/T

is computed. As s is directly proportional to 3-1, it is also
proportional to the surface/volume ratio of the particle and to the
total particle surface area per unit volume in the bed. For the
data of Table A2 neither Z vs. 6 nor k vs. s is linear, but k vs.
log s is (see Figure Al). By interpolation~the predetonation column
length for 70% TMD tetryl (6 = 115p) is 116 mm.

Obviously, the curve for ground tetryl in Figure 3 has not been
well established (large scatter in the data), and the assumption
that 6 r 160p for the ground tetryl is open to some question.
Consequently the approximation is considered just that and nothing
more.
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Table Al

SIEVE ANALYSIS OF GROUND TETRYL (844)

Sieve
Opening Wt. (gm)

Sieve No. (0) Retained on Sieve % Wt. Cum. Wt. %

20 850 0.0

30 600 0.0

40 425 0.2 0.1 100.0

50 300 9.4 5.1 99.9

70 212 45.3 24.6 94.8

100 150 45.8 24.9 70.2

140 106 49.8 27.0 45.3

200 75 31.4 17.1 18.3

270 53 0.9 0.5 1.2

325 45 0.8 0.4 0.7

Pan 0.6 0.3 0.3
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Table A2

DATA USED FOR INTERPOLATION OF i vs.

9(11) k(mm) s(11-1)*

20 184 23.50

160 103 2.94

470 63 1.00

115 116 4.09 Interpolation

s= 470 -1
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Appendix B

DETAILED DATA FOR GROUND TETRYL

Detailed data from the shots on ground tetryl are given in
Table BI. The records are shown in Figures Bl-9. Shots 1015,
1313, 1113, 1512, and 1112 (Figures BI, 2, 4, 5, and 8) have records
indicating a DDT mechanism following the original physical model 2 .
Shot 615 (Figure B7) has records suggesting the behavior of the
fine and the coarse tetryls'. The remaining three sets of records
give no evidence about the transition mechanism with the possible
exception of 1307 (Figure B9).

The shot on 61% TMD ground tetryl (Figure B9) is unusual on
two counts: velocity of the PC wave and rearward travelling
compression. The first detected compressive wave travels at
0.4 mm/ps, lower by a factor of two or more than the PC wave
velocities measured in all three tetryl series. Hence it suggests
the possibility of a variant behavior with the explosive event at
about x = 170 mm, very near k(182 mm). This might be the case
despite the sharpening of the pressure fronts shown in Figure B9b;
on the other hand, the path of the PC wave could have been drawn more
steeply (velocity r 0.6 mm/ps) and acceleration could have occurred
in the unmonitored interval just before the point of detonation onset.

Finally the rearward reflection here has a velocity of 6.2 mm/ps,
about 12% greater than the measured detonation velocity. However,
like Shot 1402 on 77% PA, the ignitor bolt showed no dent and that
end of the DDT tube was not in small fragments. For both shots, this
rearward wave is considered a shock, not a retonation.
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Appendix C

DETAILED DATA FOR PICRIC ACID

The data for the final shots with PA are given in Table Cl and
plotted in Figures Cl-C5. Since each result had to be considered in
drawing conclusions about the PA series, these data have been
discussed in the main text.
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